Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

AFSC/ABL: Karluk sockeye salmon scale time series

1.2. Summary description of the data:

To better understand how density-dependent growth of ocean-dwelling Pacific salmon varied with climate and population dynamics, we examined the marine growth of sockeye salmon in relation to an index of sockeye salmon abundances among climate regimes, population abundances, and body sizes under varied life history stages, from 1925 to 1998 using ordinary least squares and multivariate adaptive regression spline threshold models. The annual marine growth and body size during the juvenile, immature, and maturing life stages were estimated from increments on the scales of adult age 2.2 sockeye salmon that returned to spawn at Karluk River and Lake on Kodiak Island, Alaska. Intra-specific density-dependent growth was inferred from inverse relationships between growth and sockeye salmon abundance based on commercial harvest. Density-dependent growth occurred in all marine life stages, during the cool regime, at lower abundance levels, and at smaller body sizes at the start of the juvenile life stage. The finding that density-dependence occurred during the cool regime and at low population abundances suggests that a shift to a cool regime or extreme warm regime at higher population abundances could further reduce the marine growth of salmon and increase competition for resources.

Alaska salmon production fluctuates with climate and ocean conditions in the North Pacific Ocean. In this study, we evaluated the hypothesis that faster marine growth was related to higher survival as a consequence of more favorable ocean conditions for growth during the 1927-46 and 1977-2000 warm regimes, and slower growth was related to lower survival as a consequence of less favorable climatic and oceanic conditions for growth during the 1947-76 cool regime. We measured and compared the annual growth on scales collected from age 2.2 sockeye salmon that returned to Karluk Lake on Kodiak Island, Alaska from 1927 to 2000 to regime periods, climatic and oceanic indices, and survival. First and second marine-year scale growth fluctuated with the cool regime and recent warm regime. Survival estimated as the ratio of offspring to parental escapement was lower during the 1925-46 warm regime and 1947-76 cool regime. Survival was positively related to first and second marine year scale growth,

eastern North Pacific atmospheric circulation, and reduced winter and spring coastal downwelling in the Gulf of Alaska. Winter and spring climatic and oceanic conditions influences on first and second year marine growth of Karluk Lake sockeye are a possible mechanisms linking Karluk Lake sockeye salmon survival to climate over the past half century.

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection

1.4. Actual or planned temporal coverage of the data:

1925 to 2000

1.5. Actual or planned geographic coverage of the data:

W: -154.04083, E: -154.46222, N: 57.57167, S: 57.3655 Karluk Lake and River system on Kodiak Island, Alaska

1.6. Type(s) of data:

(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)

Document (digital)

1.7. Data collection method(s):

(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

Instrument: unknown Platform: unknown

Physical Collection / Fishing Gear: unknown

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:

Metadata Coordinators MC

2.2. Title:

Metadata Contact

2.3. Affiliation or facility:

2.4. E-mail address:

AFSC.metadata@noaa.gov

2.5. Phone number:

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

Ellen Yasumiishi

3.2. Title:

Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

Yes

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

Unknown

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

(describe or provide URL of description):

Lineage Statement:

Contact the dataset POC for full methodology

- 5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:
- 5.2. Quality control procedures employed (describe or provide URL of description):

Contact the dataset POC for full QA/QC methodology

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

Yes

6.1.1. If metadata are non-existent or non-compliant, please explain:

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/17247

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

Yes

- 7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?
- 7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:
- 7.2. Name of organization of facility providing data access:
 - 7.2.1. If data hosting service is needed, please indicate:

yes

7.2.2. URL of data access service, if known:

https://www.ncei.noaa.gov/

7.3. Data access methods or services offered:

N/A

7.4. Approximate delay between data collection and dissemination:

unknown

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

no delay

8. Data Preservation and Protection

The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:

(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)

TO_BE_DETERMINED

- 8.1.1. If World Data Center or Other, specify:
- 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
- 8.2. Data storage facility prior to being sent to an archive facility (if any):

Auke Bay Laboratories - Juneau, AK

- **8.3. Approximate delay between data collection and submission to an archive facility:** unknown
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

IT Security and Contingency Plan for the system establishes procedures and applies to the functions, operations, and resources necessary to recover and restore data as hosted in the Western Regional Support Center in Seattle, Washington, following a disruption.

9. Additional Line Office or Staff Office Questions

Line and Staff Offices may extend this template by inserting additional questions in this section.